

rProtein A Beads 4FF 的预装柱说明书

货号: AC17635

规格: 1*1mL / 1*5mL / 5*1mL / 3*1mL+1*5mL / 5*5mL

保存: 2-8℃

产品说明:

rProtein A Beads 4FF 是用于分离和纯化单克隆抗体、多克隆抗体或 Fc-融合标签的通用性亲和层析介质。Protein A 是一种分离自金黄色葡萄球菌的细胞壁蛋白,主要通过 Fc 片段结合哺乳动物 IgG,但是不与狗 IgG 结合,不结合人 IgM、IgD 和 IgA。蛋白 A 与蛋白 G 与不同来源及亚类的免疫球蛋白结合能力不一样。天然 Protein A 有五个 IgG 结合区域和一些未知功能的区域,重组 protein A 去除了与白蛋白及细胞表面结合位点,只含有五个 IgG 结合区域,减少了非特异性吸附。

rProtein A Beads 4FF 是以高度交联的 4%琼脂糖凝胶为基质,可以在相对较高的流速下进行单克隆抗体和多克隆抗体的纯化,被工业客户普遍接受。

表 1: 介质性能参数

V 1 / / / / / / / / / / / / / / / / /				
基质	高度交联 4%的琼脂糖微球			
粒径范围	45-165μm			
配体	重组蛋白 A			
结合载量	>40mg 人 IgG /ml(介质)			
PH 稳定范围	3-10			
操作压力	≤0.3MPa, 3bar			
贮存溶液	空溶液 20%乙醇			

表 2: Protein A 和 Protein G 对不同抗体的结合能力:

种属	亚型	Protein A	Protein G	种属	亚型	Protein	Protein
						A	G
Human	IgA	varible		Mouse	IgG1	+	++++
	IgD				IgG2a	++++	++++
	IgE				IgG2b	+++	++++
	IgG1	++++	++++		IgG3	++	+++
	IgG2	++++	++++		IgM	varible	
	IgG3		++++	Rat	IgG1	_	+
	IgG4	++++	++++		IgG2a		++++
	IgM	varible			IgG2b	_	++
Avian egg yolk	IgY	_			IgG3	+	++
Cow		++	++++	Liama			+
Dog		++	+	Sheep		+/-	++
Hamster		+	++	Monkey(rhesus)		++++	++++
Horse		++	++++	Pig		+++	+++
Koala		_	+	Rabbit	no distinction	++++	+++

++++=结合能力强; ++=结合能力中等; --=结合能力弱或没有结合

纯化流程:

1、Buffer 的准备

所用水和缓冲液在使用之前建议用 0.22μm 或 0.45 μm 滤膜过滤。

平衡/洗杂液:: 20 mM Na₂HPO4, 0.15M NaCl, pH 7.0

洗脱液:: 0.1M 甘氨酸, pH 3.0 中和液: 1M Tris-HCl, pH8.5

2、样品准备

上柱之前要确保样品溶液有合适的离子强度和 pH 值,可以用平衡/洗杂液对血清样品、腹水或细胞培养液稀释,或者样品用平衡/洗杂液透析。

样品在上样前建议离心或用 0.22μm 或 0.45μm 滤膜过滤,减少杂质,提高蛋白纯化效率和防止堵塞柱子。

3、样品纯化

- 1. 上柱:将泵管道中注满去离子水。去掉上塞子,将层析柱连接至色谱系统中。再折断下口,将预装柱接到色谱系统中,并旋紧。
- 2. 水洗: 用 3-5 倍柱体积的去离子水冲洗出存储缓冲液。
- 3. 平衡: 使用至少5个柱床体积的平衡液平衡色谱柱。 *备注: 此步骤用于平衡介质,保证介质中的溶液的组分和 pH 与样本一致。*
- 4. 利用泵或注射器上样。

备注:样品的粘度增加使得即使上样体积很少,也会导致层析柱很大的反压。上样量不要超过 柱子的结合能力。大量的样品体积也可能造成很大的反压,使得进样器更难使用。

- 5. 洗杂:用洗杂液冲洗柱子,直到紫外吸收达到一个稳定的基线(一般至少10-15个柱体积)。
- 6. 洗脱: 使用 5-10 倍柱体积的洗脱液洗脱, 收集洗脱液, 即目的蛋白组分。洗脱组分需要立即调成中性, 一般建议使用洗脱组分体积 1/10 的中和液进行中和
- 7. 水洗: 依次使用 3 倍柱体积的平衡液和 5 倍柱体积的去离子水平衡填料,最后再用 5 倍柱体积的 20%的乙醇平衡,然后保存在等体积的 20%的乙醇中,置于 4℃保存,防止填料被细菌污染

4、SDS-PAGE 检测

将纯化过程中收集的样品(包括流出组分、洗杂组分和洗脱组分)以及原始样品使用 SDS-PAGE 检测纯化效果。

填料清洗

rProtein A Beads 4FF 可以重复使用而无需再生,但随着一些变性物质的沉淀和蛋白的聚集,往往造成流速和结合载量都下降,严重影响柱子的性能,这时需要对树脂进行清洗。

1. 去除一些沉淀或变性物质

用 2 倍柱体积的 6M 盐酸胍溶液进行清洗, 然后立即用 5 倍柱体积的 PBS, pH 7.4 清洗。

2. 去除一些疏水性吸附造成的非特异性吸附物质

用 3-4 倍柱体积的 70%乙醇或 2 倍柱体积的 1% TritonX-100 清洗, 然后然后立即用 5 倍柱体积的 PBS, pH 7.4 清洗。

常见问题

表 1: 常见问题及解决方案

火 1. 中心门险从所火力				
问题	可能原因	解决方案		
纯化时目标物不与介质	1.上样量过载	降低上样量		
结合或结合量较低	2.上样速度过快	降低上样流速		
	1.样品中抗体浓度太低	使用其抗原做配体的介质		
洗脱时没有收集到目标 物或只收集到少量目标 物	2.洗脱时间不够	降低流速,延长洗脱液的保留时间		
	3.抗体被降解降解	适当的提高洗脱 pH		
	4.洗脱体积过小	加大洗脱体积		
	1.填料被堵塞	样品上柱前使用滤膜(0.22 或 0.45μm)		
		过滤,或者离心去除。		
柱子反压过高	2.样品粘度过高	有机溶剂或者蛋白稳定试剂(如甘油		
		等)可 能会引起反压增高,降低操作		
		流速。		
	1.上样速度过快	降低上样流速		
介质载量下降	2.使用次数过多	更换新介质		
色谱峰上升缓慢	介质装填过紧	重新装柱		
色谱峰拖尾	介质装填太松	重新装柱		
柱床有裂缝或干涸	出现泄露或大体积气泡引入	检查管路是否有泄露或气泡,重新装		
		柱		
	1	·		